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Autonomous Systems

Autonomous space explorers

"Faster, better, cheaper"

• Reduced human supervision
=> reduced cost

• Local reactions
=> no com delays/blackouts

• From self-diagnosis
to on-board science.



©Charles Pecheur, RIACS / NASA Ames 3

Model-Based Autonomy

• Based on AI technology

• General reasoning engine +
application-specific model

• Use model to respond to
unanticipated situations

• Example: Remote Agent
– Model-based planner/scheduler

– AI-based executive

– Model-based fault recovery

First run on Deep Space One:
May 17, 1999

(1st A.I. program in space!)
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Controlled vs. Autonomous

Controller

“Valve 1 stuck” “Open valve 2”

Tester

Controller

Planner MIRExec

“Here we are”“Go to Saturn” Tester

?
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The Challenge

V&V of autonomous systems ?

• Critical for NASA to  keep risk low.

• Huge state space and branching factor:
– complex algorithms and data structures

– internal decisions (no open control loop)

– agent-based, knowledge-based, adaptive

=> Conventional testing methods yield a very poor
coverage.
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Model Checking

• Checks whether S satisfies P, where:
S = model of the system, as a finite-state machine

P = property to verify, in temporal logic

• By exhaustive exploration
+ Full coverage (incl. non-determinism)

– Limited by state space explosion

• At early stage => less costly

• Widely used in hardware, coming in software

• e.g. Spin (Bell Labs), Murphi (Stanford)
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Symbolic Model Checking

• Manipulates sets of states,
Represented as boolean formulas,
Encoded as binary decision diagrams.

• Can handle larger state spaces (1050 and up).

• BDD computations:
– Good in average but exponential in worst case.

– Computation time depends on BDD size
=> number of variables, complexity of formulas,
but not directly state space size.

• Example: SMV (Carnegie Mellon U.)
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Verification of
Remote Agent Executive

• Smart executive system with AI features

• Modeled (1.5 month) and
Model-checked with Spin (less than a week)
NB: costly modeling phase

=> need automated translation

• 5 concurrency bugs found, that would not have
been found through traditional testing

(Lowry, Havelund and Penix)



©Charles Pecheur, RIACS / NASA Ames 9

Hunting the RAX Bug

• 18 May 1999: Remote Agent Experiment
suspended following a deadlock in RA EXEC
=> Q: could V&V have found it?

• Over-the-week-end "clean room" experiment:
– Front-end group selects suspect sections of the code

– Back-end group does modeling (in Java) and
verification (using Java Path Finder + Spin)

• => A: V&V found it... two years ago!
Same as one of the 5 concurrency bugs found before

• Morale: Testing not enough for concurrency bugs!

(Lowry, White, Havelund, Pecheur, ...)
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Verification of
Model-Based Autonomy

Reasoning Engine
• Relatively small, generic

algorithm => use prover

• Requires V&V expert level
but once and for all

• At application level,
assume correctness
(cf. compiler)

Reasoning
Engine

Model

Autonomous Controller

Model
• Complex assembly of

interacting components
=> model checking

• Avoid V&V experts
=> automated translation
Not too hard because models
are abstract

Reasoning Engine + Model ???
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The Planner/Scheduler

• High-level mission planning in DS-1, model-based.

• Produces a plan for achieving a given high-level
goal (e.g. take snapshot of asteroid)

• Models = declarations of components (OO) +
temporal constraints on values of variables
Example:

((Robot.Task=Fix) starts_before (10 20)
   (Hole.Status = Fixed))
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Verification of
Planner/Scheduler models

• Compare 3 model checkers: Spin, Murphi, SMV

• Small sample model

• Translation by hand but systematic
=> can be automated

• General translation rules for a subset of the
modeling language – Full language is for further
study (non-local constraints, quantitative time)

• SMV gives easier translation and faster
verification (≈0.05s vs. ≈30s for Spin or Murphi)

(Penix, Pecheur and Havelund)
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Planner/Scheduler Models
(encore)

• Need for handling quantitative specifications:
distances, durations, ...

• Timed automata : UPPAAL (UPPsala & AALborg)
Modeling, simulation and verification of real-time systems.

• Translate planner models in UPPAAL

•  Questions:
– Consistency

– Bounded Liveness

– Mutexes

(Khatib) anc. CS Faculty at FIT!
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MRMI
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Livingstone

Courtesy Autonomous Systems Group, NASA Ames

 The Livingstone MIR

Remote Agent's model-based fault recovery sub-system
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Livingstone Models

• Models = concurrent
transition systems

• qualitative values
=> finite state

• nominal/fault modes ClosedClosed

ValveValve

OpenOpen StuckStuck
openopen

StuckStuck
closedclosed

OpenOpen CloseClose

00

inflow = outflow = 0
Courtesy Autonomous Systems Group, NASA Ames
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From Livingstone
to SMV

• Translate Livingstone models to SMV models
similar languages => translation is easy

• Add property specifications
– In temporal logic (CTL)

– Using application-level extensions

• Initial work from CMU (Reid Simmons)

• Application: ISPP autonomous controller (KSC)

• Improvements in progress:
– Correctness (=> formalize Livingstone)

– Ease of use (more application-level extensions)
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Verification of
Model-Based Systems

• Model-based system = engine + model

• correct engine + correct plan ≠> good system !
e.g. can fail to properly recognize a fault

• Model check? Very hard!
Need (abstract) model of reasoning engine + model

=> complex, error-prone, huge state space

Reasoning
Engine

Model

Autonomous Controller
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Analytic Testing

• Testing the real system => accuracy.

• Model-checking approach => exhaustive exploration.

• Restricted scenarios in simulator (otherwise too big).

• Completes, not supersedes, Model V&V (later stage).

status

Spacecraft
Simulator

commands

Engine Model

Autonomous Controller

Model
Checking
Engine

get state
set state

single step
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 Generic Verification
Environment

• Principle: uncouple V&V subject from V&V algo.

• Common denominator of several projects in ASE.

• Hooks already present in Livingstone.

Test
Model 
Check
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Conclusions

• Autonomy needs advanced V&V techniques

• Model checking for autonomous systems based on
automated reasoning over discrete models (need to scale up)

• Translators to bridge the gap between design and V&V

• System-level V&V => Analytic testing

• For further study:
– Continuous models (real-time, hybrid, neural nets)

New mathematics required

– Learning/adaptive systems after training

– Learning/adaptive systems including training capabilities


